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Premium control problem for a mutual insurer

• Premium control problem in discrete time
• Mutual non-life insurer

• Claim costs not known when premium is set (delays)
• Premium level affects whether the company attracts or

loses customers (feedback)
• Aim: find a premium rule that generates

• a low premium
• a premium that does not fluctuate too much over time
• a premium that leads to a low probability of default

• Inspired by Martin-Löf (1983), (1994).
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Model of the insurance company

• Surplus fund

Gt+1 = Gt + EPt+1 + IEt+1 −OEt+1 − ICt+1 + RPt+1

• Earned premium

EPt+1 =
1

2
(PtNt+1 + Pt−1Nt)
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Policy/premium rule

• A policy (premium rule) π determines the premium charged
in state St
• Deterministic policy: Pt = π(St)
• Stochastic policy: π(p|s) = P(Pt = p | St = s)

• Define the state St so that the system (St) evolves in a
Markovian manner given the policy π, e.g.

St = (Gt, Pt−1, Nt, . . .).
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Markov decision process (MDP)

• S set of (non-terminal) states
• A set of actions (premium levels)
• f(a, s, s′) cost when taking action a in state s and

transitioning to state s′

• p(s′ | s, a) probability of transitioning from state s to state s′

after taking action a

Given this MDP, we want to find an optimal policy (premium
rule).
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The control problem

minimise
π

Eπ
[ T∑
t=0

γtf(Pt, St, St+1) | S0 = s
]
,

where γ is the discount factor.

f(Pt, St, St+1) :=

{
c(Pt), if Gt+1 ≥ Gmin,

c(maxA)(1 + η), if Gt+1 < Gmin,

• c an increasing, strictly convex function =⇒ premiums
(Pt) will be averaged

• T := min{t : Gt < Gmin} =⇒ termination (default)
• η > 0 =⇒ high cost in case of default
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Value functions
• Value function

vπ(s) := Eπ
[ T∑
t=0

γt(−f(Pt, St, St+1)) | S0 = s
]

• Bellman equation

vπ(s) = Eπ
[
− f(P0, S0, S1) + γvπ(S1) | S0 = s

]
=
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)
(
− f(a, s, s′) + γvπ(s′)

)
• Action-value function

qπ(s, a) := Eπ
[ T∑
t=0

γt(−f(Pt, St, St+1)) | S0 = s, P0 = a
]

= E
[
− f(P0, S0, S1) + γvπ(S1) | S0 = s, P0 = a

]
”charge premium a in state s, then follow premium rule π”
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Optimal value functions and optimal policy
• Optimal value function

v∗(s) = max
π

vπ(s)

We want to find an optimal policy π∗, i.e. vπ∗(s) = v∗(s)
• Optimal action-value function

q∗(s, a) = max
π

qπ(s, a)

”charge premium a in state s, then follow an optimal
premium rule”
• Bellman optimality equation

v∗(s) = max
a∈A

q∗(s, a) = max
a∈A

∑
s′∈S

p(s′|s, a)
(
− f(a, s, s′) + γv∗(s

′)
)

• Optimal policy

π∗(s) = argmax
a∈A

q∗(s, a)
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Policy iteration
If state space is not too large, and the transition probabilities
are explicitly known =⇒ use Bellman equation (e.g. policy
iteration)

Let k = 0, and choose some initial deterministic policy π0.
(i) Determine Vk(s) as the unique solution to the system of

equations

Vk(s) =
∑
s′∈S

p(s′|s, πk(s))
(
− f(πk(s), s, s

′) + γVk(s
′)
)
.

(ii) Determine an improved policy πk+1(s) by computing

πk+1(s) = argmax
a∈A

∑
s′∈S

p(s′|s, a)
(
− f(a, s, s′) + γVk(s

′)
)
.

(iii) If πk+1(s) 6= πk(s) for some s ∈ S, then increase k by 1 and
return to step (i).
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Temporal difference (TD) control algorithms

Transition probabilities not explicitly known =⇒ TD control
algorithm (e.g. SARSA, Q-learning)
• These algorithms directly estimate q∗(s, a)

• Remember: π∗(s) = argmax
a∈A

q∗(s, a)

• Based on real or simulated data (without needing explicit
expressions for transition probabilities)
• Still need to store q∗(s, a) for each (s, a) =⇒ state space

cannot be too large
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SARSA

Given some policy π that generates actions we can sample
(St, At, Rt+1, St+1, At+1)

• At action taken at time step t (here Pt)
• Rt+1 reward after taking action At in state St and

transitioning to state St+1 (here −f(Pt, St, St+1))

The iterative update for the estimated action-value function

Q(St, At)← Q(St, At) + αt
(
Rt+1 + γQ(St+1, At+1)−Q(St, At)

)
,

where αt is a step size parameter.
• Intuition: Rt+1 + γQ(St+1, At+1) is a slightly better estimate

of qπ(St, At) than Q(St, At)
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Exploration/exploitation

For SARSA to converge to the optimal action-value function the
policy π that generates actions needs to
• be exploratory, i.e. it needs to keep trying different actions

that might not currently be optimal
• exploit what has been experienced previously, by

progressively choosing the actions that appear to be
optimal

Examples:
• ε-greedy policy
• Softmax policy
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Exploration/exploitation
• Greedy policy (deterministic)

π(s) = argmax
a

Q(s, a)

• ε-greedy policy (stochastic)

π(a|s) =

1− ε, if a = argmax
a

Q(s, a),

ε

|A| − 1
, otherwise.

• Softmax policy (stochastic)

π(a|s) =
exp{Q(s, a)/τ}∑
ā∈A exp{Q(s, ā)/τ}
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SARSA with function approximation
State space large =⇒ SARSA with function approximation

• Action-value function qπ(s, a) is approximated by a
parameterised function q̂(s, a;w)

• Want to find weight vector w that minimises

1

2

∑
s,a

µ(s, a)
(
qπ(s, a)− q̂(s, a;w)

)2
,

where µ(s, a) is the fraction of time spent in state-action
pair (s, a)

• Stochastic gradient descent:

wt+1 = wt + αt
(
qπ(St, At)− q̂(St, At;wt)

)
∇q̂(St, At;wt)

• Problem: qπ is unknown!
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SARSA with function approximation

• Idea: As in standard SARSA, replace qπ(St, At) with

Rt+1 + γq̂(St+1, At+1;wt)

(a slightly better estimate of qπ(St, At) than q̂(St, At;wt)).

• Iterative update for the weight vector

wt+1 = wt + αt
(
Rt+1 + γq̂(St+1, At+1;wt)− q̂(St, At;wt)

)
∇q̂(St, At;wt)

• We use linear function approximation,

q̂(s, a;w) := w>x(s, a), ∇q̂(s, a;w) = x(s, a)

where x(s, a) are basis functions.
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Solving the control problem

• Goal: find optimal premium rule (low, stable premium, low
probability of default)
• Cannot fully specify the transition probabilities of the MDP

in a realistic setting
=⇒ need to use reinforcement learning (e.g. SARSA)

• State space too large in a realistic setting
=⇒ need to use function approximation

• SARSA learns from real or simulated experience
=⇒ need a lot of data!
=⇒ simulate data from a suitable stochastic environment
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Solving the control problem

How do we determine if the function approximation chosen is
appropriate?
• Start with a simple model of the environment (MDP fully

specified, state space not too large)
• Solve with classical methods

=⇒ ”true” optimal premium rule
• Solve with SARSA with function approximation

=⇒ approximate optimal premium rule
• If approximate optimal premium rule approximates the

”true” optimal premium rule well, then solve the problem
using a more realistic model of the environment
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Model of the insurance company

• Surplus fund

Gt+1 = Gt + EPt+1 + IEt+1 −OEt+1 − ICt+1 + RPt+1

• Earned premium

EPt+1 =
1

2
(PtNt+1 + Pt−1Nt)
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Simplified model
• Number of contracts

Nt+1 := N for all t (non-random).

• Operating expenses

OEt+1 = β0 + β1N.

• Investment earnings
L(IEt+1 +Gt | Ft, Gt > 0) is negative binomial,

E[IEt+1 +Gt | Ft, Gt > 0] = (1 + ξ)Gt,

Var(IEt+1 +Gt | Ft, Gt > 0) =
1 + ξ + ν

ν
(1 + ξ)Gt.
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Simplified model

• Paid claims

L(PCt+1 | Ft) = Pois(µN).

• Incurred claims and runoff profit

ICt+1 − RPt+1 = PCt+1.

• =⇒ we define the state as St = (Gt, Pt−1).
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Results - simplified model, Nt non-random
Figure: Policy iteration

Figure: Function approximation
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Results - simplified model, Nt non-random

Expected reward
Policy iteration -85.91
Q-learning −86.50
Fourier 3 with softmax policy -86.11
Fourier 2 with softmax policy −86.30
Fourier 1 with softmax policy −86.59
Fourier 3 with ε-greedy policy −92.74
Best constant policy −122.70
Myopic policy with terminal state, pmin = 0.2 −97.06
Myopic policy with terminal state, pmin = 5.8 −90.40
Myopic policy with constraint, pmin = 0.2 −121.52
Myopic policy with constraint, pmin = 6.4 −93.58

Table: Expected discounted total reward based on simulation (uniformly distributed
starting states).
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More realistic setting

• Number of contracts

L(Nt+1 | Ft) = Pois(aP bt ), a > 0, b < 0.

• Operating expenses

OEt+1 = β0 + β1Ñt+1, Ñt+1 = (Nt+1 +Nt)/2.

• Investment earnings as before,
L(IEt+1 +Gt | Ft, Gt > 0) is negative binomial.
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More realistic setting

• Paid claims

L(PCt+1 | Ft, Ñt+1) = Pois(α1µÑt+1 + α2µÑt),

where α1, α2 ∈ [0, 1] with α1 + α2 = 1.
• Incurred claims and runoff profit

ICt+1 − RPt+1 = PCt+1 + α2µÑt+1 − α2µÑt.

• =⇒ we define the state at time t as

St = (Gt, Pt−1, Nt−1, Nt)
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Results - more realistic setting

Figure: Optimal policy in more realistic setting with terminal state using linear function
approximation with 3rd order Fourier basis, for Nt, Nt−1 ∈ {5, 10, 15}.
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Results - more realistic setting

Expected reward
Fourier 3 -97.17
Fourier 2 −104.41
Fourier 1 −128.83
Policy from simplified model −116.70
Myopic policy with constraint, pmin = 0.2 −360.69
Myopic policy with constraint, pmin = 6.4 −100.92
Best constant policy −131.85

Table: Expected discounted total reward based on simulation (uniformly distributed
starting states).
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Results - more realistic setting

Figure: Simulated trajectories using policy with 3rd order Fourier basis (left) or policy
from the simplified model (right). Starting state S0 = (100, 15, 5, 5).
The red line shows the best constant policy. Each star indicates at least one
termination at that time step.
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Conclusion

• Reinforcement learning techniques enable us to solve
more realistic premium control problems
• ”Model free”, i.e. not specific to the stochastic model of the

insurance company used here
• =⇒ optimal premium rules that can be used in practice

However...
• Reinforcement learning method needs to be carefully

implemented
• Cost function (”reward signal”) needs to be designed to

ensure that the objective of the specific insurer is met
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