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Introduction
What | promised to do...

“We take a look at the common machine learning methods in use today and try to extract the
value from the hype around this field”

= What is needed to make them work?
= What are the strengths and weaknesses of these methods?
= Where does the role of the pricing actuary and the actuarial profession fit in?
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Who'’s interested in what?
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Applications of machine learning in the insurance sector
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Web-scraping and feature
design in commercial lines

Topic modeling and large
loss modeling

©2018 Willis Towers Watson. Al rights reserved

WillisTowersWatson LI"I'Iil

This is not new....

Data enrichment

Few factors, simple
methods

1990s

Other “Non-GLM” models

GLMs in auto risk models

GLMs in demand models
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Hadoop
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parallel
computing
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More data enrichment

Machine

visualisation learning

Data stream
and real-time
processing
supporting loT

Free software
environments,
analytics
libraries

NoSQL
databases

2018
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What are these machine learning methods?

Ensembles Classifications
Trees
K-nearest .
Neighbors Elastic Net

Principal
K-Means P
. Components
Clustering .
Analysis

Neural
Networks

Regression
Trees

Gradient

Boosting
Machines

Random

Naive Bayes -

Support Vector Ridge
Machines Regression

©2018 Willis Towers Watson. Al rights reserved.

WillisTowersWatson LI"I'Iil

How do you know if a method works?

Gini

AIC

RMSE

MAE
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How do you measure value?

Data Gain Curve

Gini

[ oras

Cumulative Fited(%)

Cumulative Weight(?s)

= Rank hold out observations by their fitted values (high to low)

= Plot cumulative response by cumulative exposure

= A better model will explain a higher proportion of the response with a lower proportion of exposure
= ...and will give a higher Gini coefficient (yellow area)
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But...

= Think of a model...
Multiply it by 123

= Square it

= Add 7472 billion

= ...and you get the
same Gini coefficient!
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Double lift chart
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Financial value estimate

= Errors in insurance pricing are not symmetrical
= Financial benefit can be estimated

= Consider actual experience in out of sample data
for each percentile of old vs new model fitted values

Estimate financial benefit that would have been attained

= given an assumed elasticity
= given business rules such as an assumed cap/floor approach
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Is there more to it...?

Predictive power
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Choosing a method

Dimensions of utility
Predictive power

Analytical
time and Interpretation
effort

Table
implementation

Execution speed
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Predictive power

Analytical
time and
effort

Execution speed

Interpretation

Table
Implementation
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Focus on Trees
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Decision Trees

Age

Group

©2018 Willis Towers Watson. Al rights reserved

WillisTowersWatson LI"I'Iil

A simple Tree example
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Tree results

o Underiying trend Tree {splits=1) == == Tres {splisn2) == == Tres (spltsm3) == == Tree (spliswd) == == Tres (splitent)

©2018 Willis Towers Watson. Al rights reserved

WillisTowersWatson LI"I'Iil

22 November 2018



A simple Tree example

Tree results

0.80

0.80
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0.20

0.00

-0.20

-0.40

-0.80
e Jnderlying trend Tree (splits=1) == == Tree (splits=2) == == Tres (splits=3) == == Tree (splits=4) == == Tree (splits=5)

©2018 Willis Towers Watson. Al rights reserved WillisTowersWatson LI"I'Iil

A simple Tree example

Tree results

1.40 Y N

120 | | | Group <162 |
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0.60
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0.00

-0.20

-0.40

-0.80
o Underlying trend Tres {splits=1) == == Tree {splis=2) == == Tree (spliis=d) == == Tres (splts=d) == == Tree (spllis=t)
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A simple Tree example
Tree results
1.40 Y N
1.20 I I I Group < 16? I
Y N
1.00
| | | Group<18? |

0.80 N
0.60
0.40
0.20
0.00
-0.20
-0.40
-0.60

e |nderlying trend Tres (splits=1) == == Tree (splits=2) == == Tree (splits=3) == == Tres (splits=4) == == Tres (splits=5)
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Trees are greedy
Let’s build a simple model:
Seminar Feedback Score by Equation Count
1.2
1
0.8
0.8
0.4
0.2
0
o ! 2# Equations ¢ ¢ &
N ON-actuary
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Trees are greedy

Let’s build a simple model:

Seminar Feedback Score by Equation Count

0.8
0.8
0.4

0.2

2 . 3
# Equations
= Non-actuary Actuary
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Trees are greedy

Let’s build a simple model:

Seminar Feedback Score by Equation Count

0.8
0.8
0.4

0.2

2 . 3
# Equations
e— N on-actuary Actuary == == Non-actuary {optimal tree)

Actuary {optimal tree)
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Trees are greedy

Let’s build a simple model:

Seminar Feedback Score by Equation Count

0.8 ~

-~
08 <

0.4 ~

-~
0.2 -

2 . 3
# Equations
== == Non-actuary Actuary e Total
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Trees are bad at categorical variables

Seminar Feedback Score by First Initial

0.8
0.8
07
0.8
0.6
0.4
0.3
0.2

A B CDETFGH I JKLMNOPQRTSTUVWXY2Z
e Underiying trend
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Trees are bad at categorical variables

Seminar Feedback Score by First Initial
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Trees are bad at turning points

Seminar Feedback Score by Talk Length
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Trees are bad at turning points

Seminar Feedback Score by Talk Length
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Good tree
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Shortcomings of using trees
Summary

They may miss interactions...

Slids njoyment by equation count

...and they can be bad at turning points

Sikde enjoyment by word count

- B 2 B B . W

... they may struggles with
categorical variables....

8ids ericyment by first Inital
M
-
w
-
-
«“
-
w
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gt
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Predictive power

Analytical
time and Interpretation
effort

Decision
NGCES

Execution speed
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Some machine learning methods
o . Gradient
Classifications " " Regression -
Ensembles Era— Earth Tieee Boos_tlng
Machines
K-nearest q Neural = Random
Neighbors SERBINE Networks NERDIEES Forests
K-Means aunclal Support Vector Ridge
- Components Lasso . .
Clustering . Machines Regression
Analysis
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Focus on Random Forests

Random
Forests

©2018 Willis Towers Watson. All rights reserved. WillisTowers Watson LiI'I'Ll

Random Forests

Tree 1: Prediction1 = + Noise 1
Tree 2: Prediction 2 = + Noise 2
Tree 3: Prediction 3 = + Noise 3
Tree 1000: Prediction 1000 = + Noise 1000

Random Forest:
Prediction = AVERAGE(Tree Predictions)

= AVERAGE(Tree Noise)

= Average Noise - 0 if the trees are independent
= Independence of trees achieved by fitting each tree to:
= Random subset of data (bootstrap sample)
= Random subset of factors
. , provided trees are complex enough to represent it
= Thisis bagging (bootstrap aggregation) — fit lots of independent models and take an average

©2018 Willis Towers Watson. All rights reserved. WillisTowers Watson LiI'I'Ll
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A simple Random Forest example

Random Forest results: iteration 1
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== w=Tree 1 == w=Tree 2 == «=Tree 3 == «=Tree 4

== w=Tree 7 == «=Tree8 == w=Tree9 == == Tree 10

== o= Tree5 == == Tree 6

e Underlying trend

Average Trend
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A simple Random Forest example

Random Forest results: iteration 2

140 aEs s
S SR

- =Tree2 - =Tree3 - —=Tree4

== w=Tree 1

== w=Tree 7 == «=Tree8 == w=Tree9 == == Tree 10

== o= Tree5 == == Tree 6

e Underlying trend

Average Trend
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A simple Random Forest example

Random Forest results: iteration 3

140 s e s
S SR SE

== w=Tree 1 == w=Tree 2 == «=Tree 3 == «=Tree 4

== w=Tree 7 == «=Tree8 == w=Tree9 == == Tree 10

= = Tree5 == == Tree 6

e Underlying trend

Average Trend
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A simple Random Forest example

Random Forest results: iteration 5

- P Y

- =Tree2 - =Tree3 - —=Tree4

== w=Tree 1

== w=Tree 7 == «=Tree8 == w=Tree9 == == Tree 10

= == Tree 5 == == Tree 6

e Underlying trend

Average Trend
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A simple Random Forest example

Tree 1
Tree 7

Random Forest results: iteration 10

SR SR SR SRS SRS SR SR S

Tree 2 Tree 3 Tree 4 Tree 5 Tree 6

Tree 8 Tree 9 Tree 10 e Underlying trend

Average Trend
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Interpretation

Random

Forest

Table
Implementation

Execution speed
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Some machine learning methods

Classifications " "
Ensembles Era— Earth

Neural
Networks

K-nearest

Neighbors Elastic Net

Principal
K-Means P
. Components
Clustering .
Analysis

. Gradient
Regression N
Trees Boosting
Machines
. Random
Naive Bayes -

Support Vector Ridge
Machines Regression
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Focus on Gradient Boosting Machines

Gradient
Boosting
Machines
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Gradient Boosting Machine or “GBM”

Atree A GBM
£ .
F =1 [

T RIF 0% e

N AR SR N

I Group < 15? I I | =

Y I N NZE eNER ea TR
. Ner g
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Four main assumptions

= A Learning rate / “shrinkage”

= Amount by which the old model
predictions are varied for the next model

iteration N
= New model =
Old + (Prediction x Learning rate) -
= Interaction depth
= Number of splits allowed on each tree | Growp<152 | |

(or the number of terminal nodes — 1) Y N
= N Number of trees (iterations) allowed
= Bag fraction

= Trees are fitted to a subset of the data
(the bag fraction) on a randomized basis

= Additional noise-reduction can be
achieved by using a random subset of
the available factors at each iteration

©2018 Willis Towers Watson. All rights reserved. WillisTowers Watson LiI'I'Ll
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A simple GBM example

08
06
04

0.2

GBM results at iteration 0

= # factors = 1

= |nteraction depth = 1
= Learning rate = 10%
= Bag fraction = 100%

-0.2

-0.4

0.6

« == Current residuals === Underlying trend === Current fitted values
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A simple GBM example

08
06
04

0.2

GBM results at iteration 0

-0.2

-0.4

0.6

« == Current residuals

Model trained on current residuals

Underlyingtrend = Current fitted values
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A simple GBM example

0.8
0.6
04

02

GBM results at iteration 0

02

04

0.6

« = Current residuals

Model trained on current residuals

Incremental model update Underlying trend Current fitted values
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A simple GBM example

- N

0.8

06

04

0.2

GBM results at iteration 1

-0.2

-0.4

0.6

< == Current residuals === Underlying trend === Current fitted values
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A simple GBM example

12 )\.%

08

06

04

0.2

GBM results at iteration 1

-0.2

-0.4

0.6

« == Current residuals Model trained on current residuals === Underlying trend === Current fitted values
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A simple GBM example

12 )\.%

0.8

0.6

04

02

GBM results at iteration 1

02

04

0.6

« = Current residuals Model trained on current residuals Incremental model update

Current fitted values

Underlying trend
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A simple GBM example

08

06

04

02

GBM results at iteration 2

e N3

« = Current residuals Model trained on current residuals Incremental model update Underlying trend Current fitted values
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A simple GBM example

0.8

0.6

04

02

GBM results at iteration 3

NN A

Current fitted values

« = Current residuals Model trained on current residuals Incremental model update

Underlying trend
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A simple GBM example

GBM results at iteration 4

: N A AR AT
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« = Current residuals Model trained on current residuals Incremental model update Underlying trend Current fitted values
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A simple GBM example

GBM results at iteration 5

12 I RN SEDN - W A
A S
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06

04

02

02

04

0.6

Current fitted values

« = Current residuals Model trained on current residuals Incremental model update

Underlying trend
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A simple GBM example

GBM rt-e'sults at iteration 6
12 AN N A N
NN

08

06

04

02

02

04

0.6

« = Current residuals Model trained on current residuals Incremental model update Underlying trend Current fitted values
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A simple GBM example

GBM rt-e'sults at iteration 7
12 I RN SEDN - W A
- RN TN 3

0.8

06

02

02

04

0.6

Current fitted values

« = Current residuals Model trained on current residuals Incremental model update

Underlying trend
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A simple GBM example

GBM rt-e'sults at iteration 8
12 AN N A N
N NER AR N

08

06

04

02

02

04

0.6

« = Current residuals Model trained on current residuals Incremental model update Underlying trend Current fitted values
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A simple GBM example

GBM results at iteration 9
2 N N Y- I S
G R I - ST S
)\.Ei

e

0.8

06

02

02

04

0.6

Current fitted values

« = Current residuals Model trained on current residuals Incremental model update

Underlying trend
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A simple GBM example

08

06

04

0.2

-0.2

04

0.6

== == Current residuals

GBM re-s'ults at iteration 10
N AR AR N
I+ WY JEOF SRS
VR

Model trained on current residuals Incremental model update

Underlying trend

Current fitted values
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A simple GBM example

08

06

04

0.2
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04
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== == Current residuals

GBM results at iteration 20
N N Y- I S
AN N N NS
NS N A e T
I RN SN W
NN AR R

6 7 8 9 10 " 12
N -
~
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~ ==
Model trained on current residuals Incremental model update Underlying trend

Current fitted values
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A simple GBM example
GBM re-s'ults at iteration 30
12 AN N A N
N NER AR N
N BN TN SRS L

0.8 - e _
e N I TP S
06 )\'%+)\'E§;+)\'E§Q+)\%+m
i - . -
NN PN E N
NE AT A NE AT
0.2 E‘ -
A N
0 7 8 9 L - 20
-0.2 ~o — - =
04
-06
= == Current residuals Model trained on current residuals Incremental model update === Underlying trend Current fitted values
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A simple GBM example

GBM results at iteration 40
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0.2
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04

-0.6

Current fitted values

« = Current residuals Model trained on current residuals Incremental model update === Underlying trend
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A simple GBM example

08

06

04

0.2

SoHATDoAATD

GBM results at iteration 50

AT AT
+AZ-“ +,\::““
AT
C+ATE A
)\:: +)\:""'.+

Model trained on current residuals Incremental model update === Underlying trend

+ o+ o+

Current fitted values
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A simple GBM example

08

06

04

0.2

GBM results at iteration 100

AEmE AT afaLaT aT afatas
A afaftaiafatalaial
AEAAD AR BT AL S T Tl
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AL A AR AL A A R T e
ANEAE T ARt al A
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AZERL R ol at adasal
‘MimEafaafaZafafalais
AT T afafal af atatat s
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E Y

3 8 9
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Model trained on current residuals Incremental model update === Underlying trend

Current fitted values
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A simple GBM example

GBM results at iteration 200

12
ARmEanEZ oAz atadaia i aaTat it oot
AT AR AT AT AT AR A AT A AT A AR PATE A TS AL A PR AL AL At
1 A maGZaftafaftabafaftataalaTaft alata A atatais
AEMENMEDAZTAERT AT AT TN AERT AT AT AT AT AT AT AT+
AR AR AT AR AR AR A AR AR AT AR AR A AT AR AR A AT A S
AENENME AT AZTE AT AT AZAEMEZAE AT T AT ME T aZ AT s,
0s AT AR AR AT AT AR A AT AT AR AT A AR AT AT AR AR AT AT A
AT AR AR AL AT A A PR A A AT AR FATE AL A AL A PR AL AL A+
AEHMENERAZaLZAT AT aZaZAa Ao aZaZaRa alataly
06 AT AR AT AT AT AT AT AT AT AR AT AR AT AT AR AR AT AT A
AR AR AT AR AR AT A AR AT R AR AT AT AR AR A AT A
AENENME AT ATE AT AT AZAEMEAE AT AT AT ME T oD AT S
04
0.2
0
0.2
04
06
~ = Current residuals Model trained on current residuals Incremental model update = Underlying trend Current fitted values
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A simple GBM example

08
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04

0.2

ALANE AL DAL AE AT AR AL AR S oS
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AL MDA AT Dk A A D AL A AT A ATk A ek eA T e A PA T +A
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MR AR AR AR AR A DA AR

== == Current residuals Model trained on current residuals Incremental model update === Underlying trend

GBM results at iteration 300

R

Current fitted values

b AR AT A AR AL A AR AR AR kAR A A -
BN AT A A SR A #A D A A ¢ A A AT A e e AT R $A A PATE AT PR AT PAE AL AT PA T #ATE e ASE AR+
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NEAEAESEAT AT AT AT AL+
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A A A AR A A
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A simple GBM example

GBM results at iteration 1,000

08
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04

0.2

-0.2

04

-0.6

== == Current residuals Model trained on current residuals Incremental model update === Underlying trend Current fitted values
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Calibrating the assumptions

= n-fold cross validation used to develop the interaction depth and learning rate
assumptions
= Eg for 3-fold validation, split into 3, fit on purple, test on blue parts, take average

1 2

Fit Fit Test

Iw

Fit Test Fit

Test Fit

Fit

= Resulting plots can be used to determine the optimal assumption choice
= |ncluding how many trees to run

©2018 Willis Towers Watson. Al rights reserved WillisTowersWatson LI"I'Iil
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Example 5-fold cross validation

Cross validation errors

Minimum point shows
| optimal number of trees in
| each case.

ll This example is based on
| artificial data — large
L. insurance datasets indicate

a larger number of trees to
be optimal
variable

E ‘ $0.0211
g =’ 800212
2 !
§ ! s0.0213
g y Best result shown by brown line as 500214

[ has lowest minimum validation error s00215

(interaction depth 2 and learning rate
2% in this case)

Number of trees
©2018 Wills Towers Watson. All rights reserved.
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What does a GBM look like?

35



22 November 2018

What does a GBM look like?

What does a GBM look like?

H 1 i i H H Hi Hi
il L 4 LI 4 Ly Liv] L] i)
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it work?
= How does it work?
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Deploying GBMs

. . . Corner
Model down into multiplicative correctors Eetabiich
. stablis|
tables via GLMs ST Model

Factor
Reduction

interactions Hierarchy

1| e | wm i 1| 0 [ o |
2| 2w | wem | 2 2 | | wesw | o
3 | ww | wew | wme 3 | e | wew | e
| s | s | 4| w0 | s oz
s | Agoron | e | ot 5 | vorow | asies

Analytical
environ-

ment

= Use insights to guide GLM

ratin;
g Main Policy
Rdmin System

engine

Deploy directly

©2018 Wills Towers Watson. All rights reserved.
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Deploying GBMs

Pre / post
mapping

Analytical
environ-

ment

“Comfort
Diagnostics”

ratin;
g Main Policy
Rdmin System

engine

Deploy directly

©2018 Wills Towers Watson. All rights reserved.
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Predictive power

Interpretation

Execution speed Tabki
Implemen:
Implementation
in modern
rating engines

©2018 Willis Towers Watson. Al rights reserved.
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Some machine learning methods

Ensembles

K-nearest
Neighbors

K-Means

Classifications Regression Gradient
"Earth" 9 Boosting
Trees Trees )
Machines
5 Neural . Random
Elastic Net Networks Naive Bayes -
IPHEE] Support Vector Ridge
Components Lasso pport. 9
. Machines Regression
Analysis

Clustering

©2018 Willis Towers Watson. Al rights reserved.
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Focus on Neural Networks

Neural
Networks

©2018 Willis Towers Watson. Al rights reserved WillisTowersWatson LI"I'Iil

Where is the value?

Which policyholder is more
likely to make a claim?

2128577231 636557007173 7677 7981 8285

willistowerswatson.cor m WillisTowersWatson LI"I'Iil
©2018 Willis Towers Watson. Al rights reserved.
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Where is the value?

Which picture is more likely
to be of a cat?

WillisTowersWatson LI"I'Iil

Where is the value?

Which picture is more likely
to be of a cat?

willistowerswatson.com WillisTowers Watson LiI*I'l:l
2018 Wills Towers Watson. Al ights reserved
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Neural networks

willistowerswatson.com WillisTowersWatson LI"I'Iil
©2018 Wills Towers Watson. Al ights reserved.

Analytical '

time and Interpretation

effort
Neural
network

Execution speed

©2018 Willis Towers Watson. Al rights reserved WillisTowersWatson LI"I'Iil
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Some machine learning methods

Ensembles Classifications "Earth" Regression g(:iiit?:t
Trees Trees N9
Machines
K-nearest 5 Neural . Random
Neighbors SERIBINE Networks NERDIEES Forests

Principal
K-Means P
. Components
Clustering .
Analysis

Support Vector Ridge
Machines Regression

©2018 Willis Towers Watson. Al rights reserved.
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Focus on Penalized Regression

Elastic Net

Lasso

Ridge
Regression

©2018 Willis Towers Watson. Al rights reserved. Proprietary and Confidential. For Willis Towers Watson and Wills Towers Watson client use only.
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Penalized Regression
GLM

f(x) = g'(X.8) where B estimated by minimizing  L(5|X,y)

Parameter 2

.10 005 0.00 0.05
Parameter 1

©2018 Willis Towers Watson. All rights reserved. WillisTowersWatson LI"I'Iil

Penalized Regression
GLM Lasso Ridge

f(x) = g"(X.B) where B estimated by minimizing  L(81X,y) +, Zi|3i| L4, Ziﬁf

Ridge Y; B? Lasso X;|5;]

005
loss
o~ o~ o~ 2
£ £ £ a
3 3 3
£ £ 0.00 £ 0.00
s s s -
& & & 5
L]

0.05:

0.10 005

0.00 0.05 0.10 .10 005 0.00 0.05 0.10 20.10 0.05 0.00 0.05 0.10
Parameter 1 Parameter 1 Parameter 1

Heavily penalize large parameters, Penalty reduces insignificant parameter
but does not reduce parameters to zero values to zero - useful for variable selection

©2018 Willis Towers Watson. All rights reserved. WillisTowersWatson LI"I'Iil
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Penalized Regression
GLM Lasso Ridge

5

F

f(x) = g'(X.8) where B estimated by minimizing  L(B|X,y) +H4, Z»lﬁil
L

Ridge Y, 7 Lasso Y|

010 " 0.10
0.05 0.08
loss
o o~ o~ -2
g E 000 Eo .
I & I3 =
-,
.05 205
010 010
) P 000 005 010 20 208 0.00 005 o0 <0 208 000 005 0.10
Parameter 1 Parameter 1 Parameter 1
Heavily penalize large parameters, Penalty reduces insignificant parameter
but does not reduce parameters to zero values to zero - useful for variable selection
©2018 Willis Towers Watson. Al rights reserved WillisTowers Watson Il
Same as GLMs!
_ Loss Vehicle Loss
Age Exposure Cont Group Expo: Cost
1 <=20 1,720 179 1 1-10 164,107 77
2 21-30 34,893 122 2 11-14 84,859 101
3 31-50 118,182 102 3 15-18 28,952 116
4 51+ 127,054 70 4 19-20 3,931 272
5 | AgeTotal | 281,849 91 5 | VGTotal 281,849 91
Gender Exposure Loss
end po; Cont
1 Male 197,339 92
2 Female 84,510 87
Gender
3 T 281,849 91
©2018 Willis Towers Watson. Al rights reserved WillisTowers Watson LiI"I'lil
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Predictive power

Analytical
time and Interpretation
effort

Penalized

Regression

Table

Execution speed Implementation

©2018 Willis Towers Watson. All rights reserved. WillisTowersWatson Lil*I'lsl

A toolkit...

©2018 Willis Towers Watson. All rights reserved. WillisTowersWatson Lil*I'lsl
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Conclusions

R

Method

©2018 Willis Towers Watson. Al rights reserved WillisTowersWatson LI"I'Iil

What do you use where?

(1
0 i
T
Q T
|
Data science Domain experts
©2018 Willis Towers Watson. All rights reserved. WillisTowers Watson LiI"I'lil
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It’s domain expertise that helps decide

Il
i

U
L ////é////

Uiy

%

Data science

Domain experts

©2018 Willis Towers Watson. Al rights reserved WillisTowersWatson LI"I'Iil

Issues for the Profession(s)

Training

= CAS, SOA ahead? (eg CSPA)
= |FoA playing catch up

Role of the actuary

* |s it too late?

Domain expertise matters (at least currently)

Easier for an actuary to pick up machine learning
than for a data scientist to understand insurance?

Siloed teams don’t work .
Familiarity and the right vernacular can help Regulatory issues

Scope of involvement? = TAS: Judgement - what judgement?

Pricing v Reserving v Claims analytics v/

Customer management ? Marketing ??? = GDPR

= UK Government Select Committee
(Science and Technology)

©2018 Willis Towers Watson. Al rights reserved WillisTowersWatson LI"I'Iil
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Questions and Discussion
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