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Insurance telematics: opportunities and challenges
with the smartphone solution
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Welch, Jens Ohlsson, and Martin Ohlsson

Abstract—Smartphone-based insurance telematics or usage
based insurance is a disruptive technology which relies on
insurance premiums that reflect the risk profile of the driver;
measured via smartphones with appropriate installed software.
A survey of smartphone-based insurance telematics is presented,
including definitions; Figure-of-Merits (FoMs), describing the
behavior of the driver and the characteristics of the trip; and
risk profiling of the driver based on different sets of FoMs.
The data quality provided by the smartphone is characterized
in terms of Accuracy, Integrity, Availability, and Continuity of
Service. The quality of the smartphone data is further compared
with the quality of data from traditional in-car mounted devices
for insurance telematics, revealing the obstacles that have to be
combated for a successful smartphone-based installation, which
are the poor integrity and low availability. Simply speaking, the
reliability is lacking considering the smartphone measurements.
Integrity enhancement of smartphone data is illustrated by both
second-by-second low-level signal processing to combat outliers
and perform integrity monitoring, and by trip-based map-
matching for robustification of the recorded trip data. A plurality
of FoMs are described, analyzed and categorized, including events
and properties like harsh braking, speeding, and location. The
categorization of the FoMs in terms of Observability, Stationarity,
Driver influence, and Actuarial relevance are tools for robust risk
profiling of the driver and the trip. Proper driver feedback is
briefly discussed, and rule-of-thumbs for feedback design are
included. The work is supported by experimental validation,
statistical analysis, and experiences from a recent insurance
telematics pilot run in Sweden.

I. I NTRODUCTION

A. What is insurance telematics?

Insurance telematics is a flavor of telematics [1] which
relies on an insurance premium that is based not only on
static measures like the drivers age, occupation or place of
residence, car model and configuration, or expected mileage
over the policy period, but also on dynamic measures like
actual mileage, time spent on the road or the time of day when
the trip is being made, location, and the driver’s actual style of
driving. These insurance schemes are often labeled as pay-as-
you-drive (PAYD), pay-how-you drive (PHYD), manage-how-
you-drive (MHYD), and the like. Accordingly, the premium is
based on information gathered from car trips utilizing different
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Fig. 1. Examples of measurement probes for insurance telematics: Pro-
gressive Insurance Snapshot measurement probe for the OBD outlet (left),
(Courtesy: Progressive Insurance); Screenshot of Movelo Smartphone-UBI
software RUBI (right) displaying alarm indicators for speeding, non-smooth
drives, harsh accelerations, swerving, harsh braking, and heavy cornering
(Courtesy: Movelo AB).

types of measurement probes, spanning from original equip-
ment manufacturers (OEM) installed black-boxes1, dongles
plugged into the vehicle’s on-board diagnostics (OBD) outlet,
to contemporary smartphones; two UBI measurement probes
(sensor platforms) are shown in Fig. 1.

B. Trends in insurance telematics

The UBI programs are expected to take off during the
coming years. The market forecasts predict that up to 30% of
the vehicles in the United States and 60% of the vehicles in the
United Kingdom will be insured trough some type of insurance
telematics program by 2020 [2]. The number of policy holders
corresponds to some 60 million in the United States alone.
Programs using fixed vehicle installations are based on mature
technologies, e.g.,Progressive Casualty Insurance Company
in the US has currently around 1.5 million end-users who have
tried out their UBI program utilizing information extracted
using the measurement probe displayed in Fig. 1. However, the
cost for hardware, including the indirect cost for installation,
maintenance, and logistics, limits the scalability of the UBI-

1Within the insurance telematics area, the term black-box refers to a for
the purpose tailored measurement probe that is fixedly installed inside the
vehicle. It may be equipped with its own sensors or piggy-backed onto the
vehicle’s internal sensors via the CAN-bus.
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Fig. 2. Typical wind-shield mounting of the smartphone running an insurance
telematics application (Courtesy: If P&C). The mounting supports smartphone
based vision systems for smartphone-based looking in and looking out of
a vehicle using the back and front mounted cameras, respectively; refer to
e.g., [6].

programs and reduces their deployment. Insurance providers
are therefore seeking scalable solutions.

The cellular phone and its use during car trips has early
on been identified as a valuable tool for intelligent trans-
portation systems [3], [4]. The use of (typically) wind-shield
mounted contemporary smartphones, as illustrated in Fig. 2,
has been identified as a promising option, thanks to the high
penetration of smartphones among end-users, the development
talent within the telecom industry, and the ease of deployment
of smartphone functionality via distribution of downloadable
applications. In fact, the smartphone is a technology driver. For
example, considering receivers for the different global satellite
navigation systems (GNSS), the first global positioning system
(GPS) receiver equipped smartphones entered the market in
2007; handsets with receivers that work with the signals from
both the GPS and the Russian GLONASS entered around
2011; and handsets that, in addition to the GPS and GLONASS
signals, can also receive and utilize the signals from the
European Galileo and the Chinese BeiDou systems are ex-
pected to appear during the end of 2014. In addition, the large
manufacturing volumes have turned smartphones into a driving
force in the development of low-cost microelectromechanical
system (MEMS) sensors such as accelerometers, gyroscopes,
magnetometers, etc. Accordingly, the price–performance met-
ric of the measurement capabilities of the smartphone is
continuously improving over time; refer to [5] for a survey
on the sensing capabilities of a contemporary smartphone.
Further, the smartphone also provides audio-visual means for
user interaction prior to (eg. for trip planning), during (cf. the
extended dashboard feedback displayed in Fig. 1), and after a
trip (eg. trip analysis and travel report). Finally, the wireless
connectivity of the smartphone provides an efficient means for
data transfer, avoiding an additional data plan and SIM card,
which are typically required by black-boxes and OBD dongles.

Noteworthy, is that automobile manufacturers are increas-

ingly equipping new vehicles with telematics capabilities that
do not require additional hardware. This technology, however,
will take many years to penetrate the market to a level where it
would represent a primary means of collecting UBI data. As a
result, the reliance on fixed installed devices, OBD-dongles, or
smartphones is likely to remain dominant for the next several
years.

Despite the favorable properties of the smartphone,
smartphone-based insurance telematics have not yet succeeded
to enter the market on a large scale. During recent years, some
pilot trials have been launched, but no full-blown commercial
programs are currently available. The projectIf SafeDrive,
launched by the Swedish insurerIf P&C in 2013, is a reported
example of a recent commercial pilot, where the smartphone
was used as an advanced measurement probe [7]. During the
campaign, some 1,000 signed-up drivers piloted the program
which led to both a transformation of existing customers to
the UBI program, as well as recruitment of new customers.
One may note that these pilots typically are of the same size
as the Berkeley Mobile Millennium Project [8], CA, USA, in
terms of smartphone-collected road traffic information; e.g.,
the If SafeDrivecampaign collected some 4,500 driving hours
/ 250,000 km of road vehicle traffic data [7], which is believed
to have an interest in its own right.

C. Smartphone data quality

A major reason for the slow deployment of smartphone-
based UBI programs is identified as the issues with data
quality, and in particular the reliability of measurement data.
Simply speaking, the smartphone does not provide data of
required quality so that the state-of-the-art algorithms im-
plemented in UBI tailored hardware measurement probes
can be directly transferred to a smartphone application. An
illustrative example is detection of harsh braking events, where
thresholding the calculated change of speed typically gives
a large number of false detections due to the occurrence of
outlier data and variations in the data acquisition rate. We
will come back to this example in Sec. III.

A näıve explanation for the poor data quality is, of course,
that the smartphoneper se is not designed to be a high-
end measurement probe for capturing movements with high
dynamics, such as harsh braking during a car trip. To take the
discussion forward, the data quality is in Tab. I categorized
according to the quality measures commonly employed within
the (in-car) navigation system research field [9].

In traditional insurance telematics where the speed is cap-
tured directly from the vehicle, e.g., via the OBD outlet, the
captured speed is quite accurate (it is, however, subject to
some quantization and offset). Thanks to the proprioceptive
sensing of the speed, the integrity, availability, and continuity
of service are all high. In order to use the smartphone as the
information source, on the other hand, the vehicle’s speed has
to be captured by some exteroceptive means, where second-
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TABLE I
QUALITY MEASURES OF UBI SENSOR INFORMATION[9].

Measure Description

Accuracy The conformity between sensor information and ac-
tual value.

Integrity The reliability (trust) that can be put in the sensor
information and the systems quality (accuracy) indi-
cators.

Availability The geographical coverage for which the sensor
information is available.

Continuity of
service

The availability of the service over time without non-
scheduled interruptions during the intended working
period.

by-second speed data from the GNSS-receiver2 typically is the
method of choice. This speed data is accurate, but subject to
quite frequent occurrences of undetected outliers as well as
irregularities in the data acquisition rate, i.e., the data has low
integrity. The availability is inferior compared with the speed
data provided by the OBD outlet, because of the dependency
on line-of-sight conditions to the navigation satellites [10].
In Tab. II, the vehicle’s speed, captured by the propriocep-
tive OBD-dongle, and the exteroceptive smartphone GNSS-
receiver is compared with respect to the four performance
measures introduced in Tab. I.

D. Challenges in Smartphone-UBI

As displayed in Tab. II, the first engineering challenge for
success of smartphone-based insurance telematics is how to
handle the lack of integrity of the GNSS-receiver speed data.
Both the occurrence of outliers as well as the irregularities in
the data acquisition rate are, however, detectable and combat-
able by employing low-level (that is, close to the sensor) digital
signal processing on the data streams. The result is a data
sequence with improved quality - in Tab. II denoted enhanced
GNSS. Such enhancement of data quality is one important
aspect that has to be considered in the design of smartphone
based UBI systems, which will be discussed within this article.

A second engineering challenge in the design of a smart-
phone based UBI system is to provide proper methodologies to
ensure robust driver scoring based on data with low availabil-
ity and low integrity (but, possibly enhanced). Clearly, lost
measurements are not recreatable, but the sought after UBI
measures for policy determinations may still be extractable.
For example, a harsh braking cannot be detected if the data
covering the seconds of the events are lost, whereas a measure
like smoothness of the trip can still be calculated with some
predetermined accuracy despite severe loss of data. This is
another main topic to discuss within this article.

A third challenge is the validity of the scoring, i.e., the
correlation between the measured figure of merits with the
corresponding scoring and the actual risk profile of the driver;

2The operation systems on some smartphones do not allow data to be read
specifically from the GNSS-receiver, but only from the so called Location
Service that uses a combination of Cellular, Wi-Fi, Bluetooth, and GNSS-
receiver data to locate the phone. We will throughout the paper make no
distinction between these data sources and only refer to it as GNSS-receiver
data.

TABLE II
QUALITY OF THE SPEED DATA ORIGINATING FROM THEOBD-OUTLET

AND THE SMARTPHONEGNSS-RECEIVER, AS WELL AS THE QUALITY OF
THE GNSS-RECEIVER SPEED DATA AFTER THE INTEGRITY HAS BEEN

ENHANCED THROUGH DIGITAL SIGNAL PROCESSING.

Sensor Accuracy Integrity Availability Continuity
of Service

OBD Medium High High High
GNSS High Low Low High
Enhanced GNSS High High Low High

which has to be investigated using database information of
claim statistics. Verifying the validity of scoring includes
studying such (disputed) claims that drivers who sign up for
UBI programsper se are safer drivers, than those who do
not. Studies of the validity are of utmost importance, but also
a challenge to be handled by the actuaries at the insurance
companies, and not by the engineers designing and operating
the systems. Accordingly, it is beyond the scope of this paper.

E. Contributions and outline

For the sake of the discussion, a simple yet descriptive
definition of UBI or insurance telematics is given by:

Insurance telematics defines the process of using sensor
measurements to extract relevant figure of merits (FoMs) of a
car trip driven by a (human) driver. The FoMs are later used
to calculate a driver safety profile (a score) based on several
trips, where the score will influence the driver’s insurance
premium.

Based on the above definition, some remarks are in order.
First, the general purpose of this work is to discuss the
technology aspects of insurance telematics, and the particular
purpose is to highlight the implications of using smartphones
as measurement probes. In other words, the process of gath-
ering sensor data and extracting trip-based FoMs, as studied
in Sec. II. The technology aspects include characterization
of the FoM in terms of: how important they are for the
scoring in the underwriting process; to what degree they can be
influenced by the driver to reduce the insurance premium; and
their observability (i.e., the correlation between actual sensor
measurements and the FoM) and stationarity (i.e., the time
length of the associated events).

Secondly, the enhancement of information integrity is con-
sidered in Sec. III, where digital signal processing on different
levels is discussed; spanning from sensor-near model-based
enhancement of second-by-second data, to trip-based post
processing using additional information sources such as digital
maps.

Thirdly, we discuss how the gathered FoMs and their cor-
responding characterization in terms of importance, influence,
observability, and stationarity can be utilized for the underwrit-
ing or scoring process. In particular, we discuss in Sec. IV the
robustness issue, i.e., the robustness of the driver score with
respect to the properties of the FoM. Not only the robustness
of the scoring and reliability of data are of importance for
a successful UBI program, but also a key concern is the
feedback that should be provided to the individual drivers.
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TABLE III
QUALITY MEASURES OF UBI FOMS.

Measure Description

FoM observ-
ability

The correlation between the sensor measurements
and the FoM.

Event
stationarity

The time length during which the events which make
up the FoM normally are registered.

Actuarial
relevance

The importance of the FoM for the risk assessment
of the driver.

Driver influ-
ence

The extent to which the driver influences the FoM.

Here, real-time feedback typically concerns the use of the
audio visual capabilities of the smartphone, as exemplified
by the extended dashboard screenshot in Fig. 1. Accordingly,
not only the robustness of the feedback is of importance, but
also the perception of it, which is discussed in terms of some
examples in Sec. IV.

The conclusions are drawn in Sec. V. Before we continue,
we should emphasize that insurance telematics by no means
excludes the use of the traditional static measures for the risk
calculation, such as drivers’ age and the model of the car. They
are, however, out of relevance for the discussions performed
in this article, and accordingly not further discussed.

II. F IGURE OFMERITS

While there exists many different FoMs that may be used for
insurance telematics, we have listed some of the most common
in Tab. IV. We emphasize that the list by no means claims to be
a full list of FoMs, as it excludes, e.g., FoMs reflecting the road
conditions and traffic intensity, which may be measured via
accelerometer based pothole detection and by analysis of the
sound recorded with the microphone of the smartphone [11],
[12]. The characteristics of an FoM depend on the properties
of the driver’s behavior that the FoM is to reflect and the
quality of the sensor measurements that are used to calculate
the FoM. We will in this section describe the characteristics of
the FoMs listed in Tab. IV and how the quality of the sensor
measurements affect them.

A. Characterization of FoMs

The FoMs are by different means calculated from the sensor
measurements characterized by their corresponding accuracy,
integrity, availability, and continuity of service. The effect of
the data quality on the FoMs is a non-trivial task to determine,
because it depends on the correlation between the sensor
measurements and the FoM (that is, the observability) and the
time length during which the events which make up the FoM
normally are registered (that is, the stationarity of the FoM).
Clearly, it is an easier task to measure an FoM that is based on
events that have a long duration, e.g., the smoothness over the
trip, as opposed to an FoM which consists of transient events
like the number of harsh braking events. In a similar vein, it
is an easier task to measure an FoM with high observability
such as the elapsed time of a trip, as opposed to measuring
the amount of swerving using GNSS-receiver data. The higher

the observability or stationarity measures, the less sensitive the
FoM will be with respect to the integrity and the availability
of data.

From an underwriting perspective, the mentioned measures
are not enough. The actuarial relevance of the FoM for the
scoring also plays an essential role. Traditionally, FoMs such
as the amount of speeding and the number of harsh brakings
are considered as relevant; however, the choice of suitable
FoMs for insurance telematics is a hot topic of discussion, and
is typically a choice for the individual underwriters designing
the UBI programs.

Concerning the chosen feedback given to the driver, it is
more relevant to what extent the driver can improve his driving
with respect to the given feedback, than how large of an impact
the associated FoM has on the insurance premium. A proper
driver feedback should be based on FoMs with high associated
influence. For example, the driver can typically influence the
smoothness of a ride, whereas the destination is set for a trip
with a given purpose. The measures we have introduced to
characterize the different FoMs are summarized in Tab. III.

B. FoM survey

In this section, the FoMs summarized in Tab IV are de-
scribed together with their characteristics.

1) Acceleration and Braking:The acceleration FoM and
braking FoM are commonly defined as the number of, per
unit distance or unit time, hard acceleration events and harsh
braking events, respectively. The latter FoM is by several
insurance companies viewed as one of the best indicators
of a driver’s risk profile, as it reflects how aggressive and
observant a driver is, and how well the driver plans the driving
with respect to the other road users and his surrounding. The
observability of the acceleration and braking FoMs is consid-
ered as medium since the acceleration and deceleration of the
vehicle are not directly measured by the GNSS-receiver, but
rather calculated by differentiating the speed measurements.
Robust calculations of the accelerations and decelerations from
the speed measurements are a non-trivial task as shown in
Sec. III; since the speed measurements frequently contains
outliers and the acquisition rate of the speed measurement on
some smartphones may vary with time. The time duration of
an acceleration and braking event is typically quite short, and
thus the stationarity of the FoMs are classified as low. In detail,
the acceleration and deceleration events used to calculate the
FoMs have durations of a few seconds and the GNSS-receiver
inside the smartphones nominally has an update rate of once
per second, which means that there will be only a handful
of measurements holding information about the event; data
loss during an event can thus not be compensated for. The
driver’s influence on the acceleration and braking FoMs are
classified as high and medium, respectively. The driver can
mostly avoid hard accelerations, but there may be unforeseen
and uncontrollable events that may force the driver to do a
harsh braking.

2) Speeding: Speeding is a typical FoM of relevance.
Lowering the average speed in road traffic has shown to be a
valid means to reduce the number of road fatalities and thus,
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TABLE IV
CHARACTERIZATION OF FOMS IN INSURANCE TELEMATICS CALCULATED USINGGNSS-DATA IN TERMS OF FOM OBSERVABILITY, EVENT

STATIONARITY, DRIVER INFLUENCE, AND ACTUARIAL RELEVANCE . CHARACTERIZATION PERFORMED AS“L OW”, “M EDIUM ”, OR “H IGH”.

FoM Description FoM Event Driver Actuarial
observability stationarity influence relevance

Acceleration Number of rapid acceleration events and their harshness Medium Low High Medium

Braking Number of harsh braking events and their harshness Medium Low Medium High

Speeding (absolute) Amount of absolute speeding High High High Medium

Speeding (relative) Amount of speeding relative a location dependent limit Medium∗ High High High‡

Smoothness Long-term speed variations around a nominal speed High High Medium Low

Swerving Number of abrupt steering maneuvers and their harshness Low† Low Medium Low

Cornering Number of events when turning at too high speed and their
harshness

Medium Medium High Medium

Eco-ness Instantaneous or trip-based energy consumption or carbon
footprint

Low Medium High Low

Elapsed time Time duration of the trip High High Low Low

Elapsed distance Distance of the trip High High Low High

Time of day Actual time of day when making the trip High High Low High

Location Geographical location of the trip High∗ High Low Medium

† Not observable using only GNSS-receiver data. Fusion with inertial measurements is required.
‡ Given that the database with speed limits is sufficiently accurate.
∗ Digital map or database required.

the driver’s speeding is likely to correlate with a higher risk
of road accidents. Speeding can be defined and measured in
several ways. In addition to the more general definition:“The
act of driving a vehicle faster than is allowed by law”, one
could argue that it is more relevant from a risk perspective
that the speed either should not exceed a certain absolute fixed
threshold, a legal or recommended speed for a road segment,
or a certain percentile of the speed distribution on a specific
road segment. The deviation from the reference speed can be
measured both as a percentage and an absolute number.

The speed of the vehicle is directly measured by the GNSS-
receiver, and the observability of the absolute speeding FoM
is thus considered high. However, the relative speed FoM
requires the position of the vehicle to be mapped to a road-
segment, via some map-matching algorithm, in order to get
the current reference speed limit [10]. The observability of
the relative speeding FoM is, due to the need of additional
information, considered to be medium. The stationarity of
speeding is considered high since the time window that must
elapse before an act is considered speeding can almost surely
be set sufficiently long. Since a driver can fully control the
speed of the car, its influence-value is regarded as high.

3) Smoothness:The FoM describing the smoothness of
the trip is a measure of the driver’s skills in driving softly,
anticipating the traffic, and keeping a constant speed. The FoM
is typically calculated as the variance of the measured speed
over a predefined time window; a time window chosen so that
accelerations and decelerations between road-segments with
different speed limits only marginally affect the FoM. Since
the speed is directly measured by the GNSS-receiver and the
smoothness FoM is based on the speed measurements from
the whole trip, its observability and stationarity are considered
to be high, and the sensitivity to data of poor quality is low
because of the inherent averaging. Since the driver cannot fully

predict the behavior of the other road users and the occurrence
of traffic queues, etc., the influence is considered as medium.

4) Swerving: Swerving is defined as an abrupt steering
maneuver in either direction which changes the deflection of
the wheels at a high rate. The event can be detected when a
driver attempts to steer away from an obstacle in the road or
suddenly detects the risk of an involuntary lane change. This is
often a sign of insufficient awareness of the road on the driver’s
part, which can be related to drowsiness or other distracting
factors. However, there are of course also unforeseen situations
which can require an immediate and resolute steering response
from the driver, in order to avoid collision or other danger.
Therefore, the driver’s influence on this FoM is considered as
medium.

The standard update rate of once per second of the smart-
phone GNSS-receiver data is generally too low for the detec-
tion of swerving events, due to their short duration. Instead,
one must rely on data from accelerometers and gyroscopes.
The gyroscopes are used to capture high-frequency steering
events, while the accelerometer fixes the orientation of the
gyroscope, which is needed since we are only interested
in rotations around the yaw axis (perpendicular to the road
surface). The observability of swerving events is constrained
by the limited accuracy in both the angular rates given by
the gyroscope and the estimation of the yaw axis given by
the accelerometer data. To further complicate the solution is
the requirement to reject sensor data when the smartphone is
picked up by the driver or is not rigidly mounted in the car.
While detections of impaired driving would be important in
any driver assessment, the low observability presently limits
the effect that swerving can have on the final score.

5) Cornering: Many insurers have requested methods for
the detection of risky driving during cornering. Sharp turning
maneuvers at high speeds are associated with several dan-
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gerous driving actions, and can lead to both car rollovers
and skidding events, in which the driver completely loses
control of the vehicle. Although several measures have been
taken to improve the stability of historically rollover inclined
vehicles such as SUVs, the influence and overrepresentation
(as compared to all car crashes) of rollovers in car crash
fatality statistics remains. Moreover, sharp turns are more often
conducted in urban or other areas with a high population
density, than on e.g., isolated freeways. In these areas, many
pedestrians and other drivers can be assumed to be in the
vicinity, and the speed should be kept low enough to give the
driver sufficient reaction time.

Whether or not a cornering event is near to cause a rollover
or skidding, is determined by comparing the magnitude of the
horizontal forces acting on the vehicle, with the vehicle’s sta-
bility coefficient and the tires friction coefficient, respectively.
These coefficients are uniquely given by the characteristics of
the vehicle, the tires, and the road’s surface. The horizontal
forces can be estimated using several information sources.
Since the cornering events are relatively short (a single event
does not last longer than a typical turning maneuver, and
the stationarity is therefore classified as medium), it is close
at hand to locally approximate the driving trajectory during
an event with a circle arc. It is then possible to estimate
the horizontal forces by applying Newtonian mechanics to
circular motions, and the cornering event detection becomes a
problem of estimating the vehicle velocity, acceleration (in the
longitudinal direction) and angular velocity (or equivalently,
the radius of the driving trajectory). While these quantities can
be estimated using only GNSS-receiver data, the update rate
will, just as in the case of swerving, limit how short cornering
events that can be captured.

The driver-influence on cornering is classified as high, since
there are few events in which high horizontal forces improve
the driving safety or are necessary from a practical point of
view.

6) Eco-ness:The eco-ness FoM is a measure of how energy
efficient a driver is driving. Even though the eco-ness FoM
may be of low importance in the calculation of the insurance
premium, it may be an attractive feature to include in the
feedback to the user. Since the smartphone can not directly
measure the fuel consumption, eco-ness FoM calculations
using non-intrusive instantaneous fuel consumption monitored
by smartphone GNSS data is a good example of advanced
model based signal processing, where a parameterized model
of a combustion engine in combination with a vehicle energy
balance model is utilized to predict the instantaneous energy
consumption. The observability of the FoM is clearly low
because of the heavy involvement of approximate models
used to transform the speed information to a measure of the
energy consumption. Typically, the predictions of relevance
are on a minute scale, which through averaging eliminates the
influence of random variations due to data imperfections and
modeling imperfections. Accordingly, the stationarity can in
most applications be considered to be on a medium level. A
detailed presentation including an extensive evaluation using
experimental data can be found in [13].

GNSS-receiver
Polynomial
regression

HDOP/CNR

Sample time
monitoring

monitoring

Position-speed-time
consistence

Weighting

Cleaned & resampled data

Residual

Quality index

Fig. 3. Block diagram of a low-level signal processing algorithm that
enhances the integrity of the GNSS-receiver data. It handles the possibly non-
uniformly sampled GNSS-receiver data and provides uniformly resampled
data as well as an estimate of the accuracy and reliability of the data, i.e., a
quality index.

7) Elapsed time, distance, and time of day:The FoMs
elapsed time, distance, and time of the day are defined as the
total time the vehicle has been in motion, the total distance the
vehicle has traveled, and the time of the day when the vehicle
has been used, respectively. Since all of these FoMs are based
on quantities that can be directly measured by the smartphone
and the duration of the events are long, both the observability
and the stationarity are classified as high. However, as the
driver’s daily-life needs dictate where and when the driver
has to drive, the influence the driver has on these FoMs is
considered to be low.

8) Location: The FoM location is defined as the location
of the vehicle with respect to some of the insurer predefined
geographical regions. For example, some areas of a city or
an intersection may be associated with a high frequency of
accidents, and the risk associated with driving in these areas is
thus considered high. Even though the calculations of the FoM
require the GNSS-receiver data to be mapped to a database
of geographical regions, the regions are generally large and
the mapping is easy. Further, the time spent in a region is
often relatively long. The observability and stationarity are
thus considered high. However, as the driver’s daily-life needs
dictate where and when the driver has to drive, the influence
the driver has on these FoMs is considered low.

III. I NTEGRITY MONITORING AND ENHANCEMENT

Inherent to all GNSS-receivers are their sensitivity to dis-
tortions and disturbances of the received satellite signals. If
these distortions and disturbances, which may be due to, e.g.,
signal multipath, go undetected by the GNSS-receiver, the true
accuracy of the calculated navigation solution and accuracy
indicated by the GNSS-receiver may be in mismatch, causing
overconfidence in the accuracy of the navigation data and
a loss of data integrity. The loss of data integrity, which
in data from smartphone GNSS-receivers often appears as
undetected outliers, makes it difficult to reliably calculate
some of the FoMs. Thus, to guarantee robust calculations
of the different FoMs, additional data cleansing and integrity
monitoring are needed. Such additional cleansing and integrity
monitoring rely on additional information and constraints
about the possible motion and behavior of the GNSS-receiver,
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and we will next describe two such methods. One that works
on the second-by-second data, and one that works with the
data from a whole trip.

A. Second-by-second data cleansing and integrity monitoring

The acceleration and deceleration of the car are used to
calculate a plurality of the discussed FoMs, e.g., the harsh
braking FoM. A direct differentiation of the GNSS-receivers
speed data, i.e.,

âk =
sk − sk−1

tk − tk−1

(1)

is a typical example of a, so called, mimic hardware method
for calculating the acceleration by the same method as used
in black-boxes or OBD dongles. In (1),sk is the speed at
time instanttk, and âk denotes the calculated acceleration.
The differentiation method in (1) amplifies high frequency
errors like noise and outliers, which in turn may cause false
detections in a detector that signals the occurrence of a harsh
braking event if the calculated deceleration falls below a
threshold. In addition, the time differencetk−tk−1 is typically
considered constant, since most GNSS-receivers calculate a
navigation solution at a regular rate. (The update rate is
typically once per second.) However, for some smartphone
platforms there are significant variations in the update rate
and in accordance the assumption of a fixed update rate will
be another source of errors, or false detections.

In Fig. 3, a block diagram of a low-level signal processing
data cleanser designed to overcome the problems with data
outliers and a time varying data rate, is depicted. The main
block of the cleanser is the polynomial regression block, in
which the speed measurements are fitted to a polynomial
model that locally describes the dynamics of the vehicle.
From the fitted polynomial model, interpolated estimates of
the vehicle’s speed and accelerations can be calculated and
by monitoring, the residual of the fitted data, outliers can be
detected. To further check the data for erroneous data points,
the consistence between the position, speed, and time stamps
of the data; the variations in the data rate; and the dilution-
of-precision (DOP) and carrier-to-noise (CNR) ratio of the
GNSS-receiver data, is monitored. The monitored measures
are weighted together into a new data quality index.

The performance of a harsh braking detector that uses (1)
to calculate the speed derivative and a detection threshold of
−2 m/s2 is illustrated in Tab. V; refer to [14] for details.
Also illustrated is the performance of the detector that uses
the data cleanser in Fig. 3 to estimate the speed derivative
and remove outlier data. The results are based on the GNSS-
receiver data recorded from seven, in the windshield cradled
mounted iOS and Android smartphones, during a 90 minute
drive. The GNSS coverage for the different phones spanned the
interval 60.0-99.7%. As a gold standard reference, the harsh
braking events detected using the speed read out from the
vehicle’s OBD-outlet, together with the differentiator in (1)
were used. Because of the known quantization error of the
OBD signal, the harsh braking threshold of−2 m/s2 was
altered to include not only the nominal detector, but also the

TABLE V
HARSH BRAKING DETECTION PERFORMANCE USING(1) AND THE DATA

CLEANSER IN FIG. 3 TO ESTIMATE THE DECCELERATION OF THE VEHICLE.
THE SMARTPHONE STATISTICS ARE BASED ON THE RESULTS OF7

SMARTPHONES USED FOR THE TEST, WITH A GNSS-COVERAGE IN THE

INTERVAL 60.0− 99.7%. THE INDIVIDUAL DETECTION RESULTS HAVE

BEEN SCALED WITH THEGNSSCOVERAGE TO COMPENSATE FOR THE
LOSS OF DATA. THE ESTIMATED STANDARD DEVIATIONσ OF THE TOTAL

NUMBER OF DETECTIONS IS GIVEN WITHIN PARENTHESES.

Gold standard reference

Detector Correct Indeter-
minable

False Total

Zero-false-alarm 3 0 0 3
Nominal 3 3 0 6
Zero-missed-detection 3 15 0 18

Average over 7 smartphones running in parallel

Data type Correct Indeter-
minable

False Total (σ)

Raw data 3.1 10.0 30.2 43.3 (11.7)
Cleansed data∗ 2.2 3.6 0.8 6.6 (1.7)

∗ Data cleansed using the cleanser in Fig. 3.

zero-missed-detection (a slightly higher threshold) and zero-
false-alarm (a slightly lower threshold).

From Tab. V, one can conclude that the direct differentiation
of the smartphone-data provides a large number of false
detections of the harsh braking events. A proper low-level
data cleansing is shown to remove the false detections and
provide detection results close to the nominal detector that is
using OBD speed data. In particular, the detection results using
enhanced data are well centered in the interval determined by
the number of detections provided by the OBD-based zero-
false-alarm and zero-missed-detection detectors, respectively.
As a guideline for the requirement on outlier detection of
the data cleansing, one may note that harsh braking events
typically occur once per 100 km. Thus, the harsh braking
detector must have a false-alarm rate which is a magnitude
less frequent.

B. Trip-based data cleansing and integrity monitoring

To calculate the relative speeding FoM, the GNSS-receiver
measured speed must be compared to the speed limit of the
road-segment on which the vehicle currently is traveling on.
Hence, the data from the GNSS-receiver must be mapped to a
database of the road-segments in the road-network, a process
referred to as map-matching. A survey on map-matching
technologies can be found in [15].

Clearly, the accuracy of the calculated relative speeding
FoM will depend both on the reliability of the map-matching
process and the accuracy of the speed limits stored in the
database. The accuracy of the speed limits stored in the
database is mainly dependent on how frequently the map
vendor updates their map database, but the reliability of the
map-matching can be enhanced, as will be illustrated next
through trip-based data processing.

To illustrate how the reliability of the relative speeding
FoM can be increased through trip-based data processing, the
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Fig. 4. Illustration of how trip-based map-matching can be used to improve
the robustness of the relative speeding FoM calculations. The global map-
matching algorithm, which uses the data from the whole trip, maps only one
road-segment erroneously, whereas the incremental algorithm maps five road-
segments erroneously.

number of correctly matched road-segments using a global and
incremental map-matching algorithm is compared in Fig. 4.
The global algorithm does the map-matching off-line and uses
the data from the whole trajectory, whereas the incremental al-
gorithm does the map-matching in real-time and thus only uses
past data to determine the current location of the vehicle in
the road-network; the algorithms use the same geometrical and
topological information. From Fig. 4 it is clear that by using
a global (off-line) map-matching algorithm, the robustness of
the map-matching, and the relative speeding FoM calculations,
can be be greatly enhanced.

IV. SCORING AND ITS ROBUSTNESS

FoMs for insurance telematics are typically calculated over
a trip, eventually differentiated into categories like speeding
in urban areas, speeding on highways, daytime speeding, etc.
Combining, possibly categorized, FoMs continuously collected
over the policy period or collected during a qualification
period into a measure of the actual risk for different kinds of
insurance claims is clearly an intricate problem. By necessity,
the description below is simplified and adopted to the purpose
of the paper.

A. Introduction to scoring

The scoring is defined as the process

F : {f1, . . . , fN} → S, (2)

wherefn denotes then:th FoM, andS defines the resulting
score. For the sake of the discussion, we will consider a scalar
scoreS ∈ [0, 1], where a higher value ofS indicates a safer
driver than a lower value.

Often asked for is an explicit ruleF . However, it is clear
that no such unique rule exists, but rather, it is dependent
upon the considered customer segment, traffic situation, or
particular risk models employed by the insurer. The way ahead
to determine a suitableF is based on doing by learning, which
requires pilots such as theIf SafeDrivein [7].

B. Scoring based on number of harsh braking events

Let f denote the number of detected harsh brakings per unit
time, that is, the actual number of detected harsh brakings over
a trip divided by the elapsed time of the trip. Further, consider
the scoring

S =
1

1 + αf
(3)

whereα is a constant to be determined. The scalarα could
for instance be determined by letting the average number of
harsh brakings per unit time,fA, for some given customer
segment and regional location, result in some predetermined
score,SA (saySA = 1/2). This means that we setα = (1−
SA)/(SAfA). Note, that no triggered events (f = 0) give a
score ofS = 1, while S approaches zero as the number of
detections per unit time grows.

Now consider a driver in the above mentioned population.
As we are primarily interested in deviations in the scoring due
to imperfect measurements, and not deviations due to varying
driving or trip characteristics, we assume that the driver’s
actual number of braking events per unit time is exactlyµ for
each trip. Since the scoring functionF is strictly convex for
all relevant parameter values, a loose application of Jensen’s
inequality shows that the scoring is biased in the sense that
the expectation of the obtained scoringSObtained exceeds, due
to the random fluctuations inherent in the measurements, the
actual scoringSActual as

SActual =
1

1 + αµ
< E

[
1

1 + αf

]
= SObtained, (4)

whereE[·] denotes statistical expectation operator.
Now assume that we would like to classify each trip as

either good, acceptableor poor (in terms of safety, or low
risk) by quantizingS. For example, the limits can be chosen
so that the outcomes ofS are divided into three equally large
intervals. We then arrive at the classification system

C(S) =





good, S > 2/3

acceptable, 1/3 < S ≤ 2/3

poor, S ≤ 1/3.

(5)

Given some distribution forf , it is at this point easy to
calculate the probability of different classifications, or the risk
of an erroneous classification, e.g., that a driver withSActual <
1/3 has a trip erroneously classified asacceptableor good.
We will exemplify this by studying Tab. V, which shows that
after proper applied low level digital signal processing on the
smartphone data, the number of detected harsh brakings in a
typical trip has only a negligible bias and a standard deviation
σ ≈ 0.25µ, whereµ is the actual number of harsh brakings.
By assuming that this(µ, σ)-relation holds in general, we can
in a first attempt modelf as a Gaussian stochastic variable,
i.e. f ∼ N (µ, (0.25µ)2). Now, assuming thatfA = 6, SA =
1/2 and the scalarα = (1 − SA)/(SAfA) = 1/6, a good
driver with half the number of harsh brakings compared to
the average of the considered population hasµ = fA/2 = 3
(which means that the driver is exactly on the limit between
goodandacceptablein the sense that1/(1+αµ) = 2/3) and
will be classified asgoodor acceptablewith a probability of
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1/2 each. Similarly, a poor driver on withµ = 2fA = 12 will
to a very good precision be classified asacceptableor poor
with a probability of1/2 each.

C. Design of scoring

In the previous example, the scoring was calculated using a
single FoM. In practice, at least a handful of different FoMs
is combined into a scoreS. For avalid scoring, the actuarial
importance of the FoMs has to be taken into account, i.e., a
scoring should result in a risk profile that correlates with the
actual risk of the driver. The detailed characterization of the
FoMs in terms of actuarial importance is of the discretion of
the underwriters at the insurance companies, based on analysis
of their databases with claim statistics.

Given a set of sufficiently important FOMs, the scoring
process (2) has to be designed, now taking into account the
effects of the reliability (that is the combination of integrity
and availability) of the gathered sensor data and its influence
onto the observability of the FoMs, as well as the physical
meaning of the FoMs as given by their time duration, i.e.,
their stationarity. Sensor data integrity should in general be
enhanced to reliably calculate FOMs which are transient in
nature and rely on measurements with weak correlation to the
measurand. Additional uncertainty has to be taken into account
as well, like uncertainty originating from fusion of data from
a plurality of sensors; or originating because of the use of
external databases like digital maps. It is an intricate problem
where the robustness of the obtainedF has to be studied with
respect to the uncertainties introduced in the chain from sensor
to score.

In summary, the process of designingreliable scoring is
an engineering trade-off between actuarial importance of the
FoMs and their corresponding properties in terms of FoM
observability and event stationarity. Thevalidity of the scoring
is then an actuarial exercise where success relies on reliable
data.

D. Robustness and perception of driver feedback

We end this section with a discussion on the robustness and
perception of the feedback provided to the driver.

An example (taken from theIf SafeDrivecampaign reported
in [7]) of after-trip feedback is to provide the driver with
a map indicating the locations of harsh braking events as a
means to provide constructive feedback of how their driving
performance can be improved. As discussed, a harsh braking
event is an event of short time duration; medium correlation
between sensor data and an event to be detected; and is also
a quite rare event as such. A typical trip usually contains
none, or a very small number of actual harsh braking events.
Because of the lacking availability of data (recall the span
of GNSS-coverage reported in Tab. V), actual events may be
missed with a quite high probability. In addition, the lack of
reliability (relative the requirements) may introduce some false
indications. The effect is that the driver most probably reacts
in a negative manner if the provided feedback does not comply
with the driver’s actual driving pattern during the trip. A harsh
braking is typically an event that you remember as a driver,

both as an event as well as the location of it. In summary, the
feedback is not robust enough with respect to false or missed
detections and should be avoided because it reduces the overall
trust in the UBI program.

Now, consider the following scoring

S =
1

3

(
1

1 + f1
+ f2 + f3

)
, (6)

where f1 denotes the number of harsh braking events;f2
the time of day, withf2 = 1 during daytime andf2 = 0
during nighttime; andf3 the location, with f3 = 1 for
very safe locations andf3 = 0 for roads with historically
a very high number of accidents, and thatf3 is available
with some kind of granularity in the interval[0, 1]. From the
previous discussions, it is clear that the scoring (6) reflects the
driver’s risk and is a suitable score for calculating an insurance
premium.

From a perception of scoring, however, it may be considered
counterintuitive. Consider an extremely rough ride (f1 → ∞)
during daytime (f2 = 1), and also a smooth ride (f1 = 0)
during nighttime (f2 = 0). Both trips result in the score

S =
1 + f3

3
, (7)

where, for these trips,S ∈ [1/3, 2/3]. Now, considering the
classification system in (5) (where the region classified as
acceptableis slightly shrunk, to be mathematically stringent),
that is with transition levels1/3 + δ and 2/3 − δ for some
positiveδ close to zero, respectively. We note that both trips
most likely are classified asacceptable, which as such may be
counterintuitive for the driver – expecting a classification of
poor for the former ride, andgood for the latter. Clearly, the
obtained scoring is not only dependent on the number of harsh
braking events, but also due to the time of day. Even worse,
taking the locationf3 into account, a smooth (and perceived
safe) ride may in fact be classified aspoor as well as a rough
ride may be classified asgood – a result that clearly by the
driver may be perceived as counterintuitive.

Results like the ones obtained in the example above are
typically considered to be counterintuitive by the driver, and
thus will influence the driver’s opinion about the reliability of
the UBI program. Here, as classified in Tab. IV, the time of
day f2 and locationf3 are FoMs with a low influence factor.
Typically, the driver’s opinion on the level of risk correlates
more with the driver’s own behavior, rather than on parameters
that typically cannot be influenced, such as the time of day
and location of the trip.

V. CONCLUSIONS

Usage based insurance using smartphones as measurement
probes is a good example of an application where the in-
formation and communication technologies (ICT) enable new
applications for intelligent transportation systems (ITS). The
ubiquitous smartphone enables commercial insurance telemat-
ics here and now, and bridges the gap to future UBI programs
based on OEM installed devices following (yet to be agreed
upon) standards. The smartphone offers a scalable solution
where the driver downloads a UBI-application, after which
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the driver may sign-up with a program, obtaining an insurance
fee that is determined by dynamic measures describing when,
where and how the trip has been performed. This technology
has the capability to disrupt the contemporary and existing
business models in the insurance industry. As outlined in this
paper, it also affects how the process of risk assessment is
conducted. Other core business processes in car insurance,
such as the sales process can be radically innovated with
this technology, getting more points of interaction with the
customer, and enabling new relations with the customers.

The paper has discussed the technical challenges and high-
lighted the main obstacles for successful UBI programs in
terms of sensor information quality with respect to integrity
and availability; figure of merits describing driver behavior;
and the forming of a scoring procedure describing the risk
profile based on the figure of merits of actuarial relevance. The
challenges on the higher system levels when providing sensing
as a service, and challenges related to the provided incentives
to the insurance customers, and related to the insurer’s business
model are relevant, but are also beyond the scope of this paper.
Discussion around these topics can be found in [7].

In the paper, we have tried to highlight and discuss the
challenges involved in transforming a UBI program from a
program that uses tailored hardware electrically connected to
the vehicle, to a program based on a stand-alone smartphone
as a measurement probe and communication device. With the
introduction of the smartphone as the in-vehicle device, the
possibilities to feed back information to the driver increase
tremendously, thanks to the high resolution screen, audio-
visual means, but also the easy access to remotely located
database information. We have exemplified the risk of provid-
ing the driver with information that reflects the risk profile,
because it may be perceived in the wrong way. Accordingly,
the design of driver feedback has to be considered seriously
in the design of any smartphone-based UBI system.
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